解:(1)∵

,

,
∴

=k(1,2)+(-3,2)=(k-3,2k+2)

=(1,2)-3(-3,2)=(10,-4),
∵

與

垂直,
∴10(k-3)-4(2k+2)=0,
∴k=19
(2)∵


與


平行,
∴10(2k+2)+4(k-3)=0,
∴k=-



=(-

,

)


=(10,-4)
∴兩個(gè)向量平行且方向相反.
(3)∵


與


夾角為鈍角,
∴10(k-3)-4(2k+2)<0,且k

,
∴

.
解析分析:(1)根據(jù)所給的 兩個(gè)向量的坐標(biāo)寫出

與

的坐標(biāo),根據(jù)兩個(gè)向量之間的垂直關(guān)系,寫出兩個(gè)向量的數(shù)量積等于0,得到關(guān)于k的方程,解方程即可.(2)根據(jù)上一問(wèn)寫出的兩個(gè)向量的坐標(biāo),寫出兩個(gè)向量平行的坐標(biāo)形式的充要條件,得到關(guān)于k的方程,解方程即可.(3)根據(jù)第一問(wèn)做出的兩個(gè)向量的坐標(biāo),得到兩個(gè)向量的數(shù)量積小于0,且兩個(gè)向量不能共線且反向,得到k的值.
點(diǎn)評(píng):本題考查兩個(gè)向量的坐標(biāo)形式的垂直,平行和夾角是鈍角,解題時(shí)注意最后一問(wèn),不要忽略我們用兩個(gè)向量的數(shù)量積來(lái)表示夾角是鈍角,其中包括兩個(gè)向量方向相反的情況,注意舍去.