解:(1)n≥2時,由an+1=2Sn+2,得an=2Sn-1+
兩式相減可得:an+1-an=2an,∴an+1=3an,即數(shù)列{an}的公比為3
∵n=1時,a2=2S1+2,∴3a1=2a1+2,解得a1=2,
∴an=2×3n-1;
(2)由(1)知an=2×3n-1,an+1=2×3n,
因為an+1=an+(n+1)dn,所以dn=

第n個等差數(shù)列的和是An=(n+2)an+

×

=4(n+2)×3n-1=(n+2)(n+1)dn,
∴存在一個關于n的多項式g(n)=(n+2)(n+1),使得An=g(n)dn對任意n∈N*恒成立;
(3)假設在數(shù)列{dn}中存在dm,dk,dp(其中m,k,p成等差數(shù)列)成等比數(shù)列
則dk2=dmdp,即(

)2=

×

因為m,k,p成等差數(shù)列,所以m+p=2k①
上式可以化簡為k2=mp②
由①②可得m=k=p這與題設矛盾
所以在數(shù)列{dn}中不存在三項dm,dk,dp(其中m,k,p成等差數(shù)列)成等比數(shù)列.
解析分析:(1)n≥2時,由an+1=2Sn+2,再寫一式,兩式相減,即可求得數(shù)列{an}的通項公式;(2)先求得dn,從而可得第n個等差數(shù)列的和An,由此可得結(jié)論;(3)利用反證法.假設在數(shù)列{dn}中存在dm,dk,dp(其中m,k,p成等差數(shù)列)成等比數(shù)列,由此可得m=k=p這與題設矛盾.
點評:本題考查數(shù)列通項公式的求解,考查等差數(shù)列的求和,考查反證法思想,確定數(shù)列的通項,利用數(shù)列的求和公式是關鍵.