解:(1)∵sin2840°+cos540°+tan225°-cos(-330°)+sin(-210°)
=sin2120°+cos180°+tan45°-cos30°+sin150°
=
-1+1-
+
=
;
(2)∵tanβ=
,
∴sin2β-3sinβcosβ+4cos2β
=
=
=
.
解析分析:(1)利用三角函數(shù)的誘導(dǎo)公式對(duì)sin2840°+cos540°+tan225°-cos(-330°)+sin(-210°)化簡(jiǎn)即可求其值;(2)利用tanβ=
,將所求關(guān)系式的分母“1”用sin2β+cos2β替換,轉(zhuǎn)換為關(guān)于tanβ的關(guān)系式即可.
點(diǎn)評(píng):本題考查三角函數(shù)的化簡(jiǎn)求值,考查同角三角函數(shù)間的基本關(guān)系及三角函數(shù)的誘導(dǎo)公式,考查轉(zhuǎn)化思想與運(yùn)算能力,屬于中檔題.