解:(1)作法:①連接BC,
②分別以B、C點(diǎn)為圓形,OB為半徑畫弧,設(shè)兩弧交于點(diǎn)M,
③連接OM,設(shè)OM與圓交于點(diǎn)D,
④則點(diǎn)D為所求作的點(diǎn).
(2)不成立,添加:AB是直徑,
證明:連接BC,OC,
∵點(diǎn)D為
的中點(diǎn),
∴∠COD=∠BOD,
∴∠BOC=2∠BOD,
∵∠BOC=2∠CAB,
∴∠BOD=∠CAB,
∴AC∥OD.
解析分析:(1)連接BC后,過O點(diǎn)做BC的垂線,則垂線與
的交點(diǎn)即為D點(diǎn),(2)不成立,添加:AB是直徑,連接BC,OC,由點(diǎn)D為
的中點(diǎn),推出∠COD=∠BOD,可知∠BOC=2∠BOD,再由∠BOC=2∠CAB,通過等量代換可得∠BOD=∠CAB,即可推出∠AC∥OD.
點(diǎn)評(píng):本題主要考查過線外一點(diǎn)作線段的中垂線,圓周角定理,平行線的判定等知識(shí)點(diǎn),關(guān)鍵在于正確的作出圖形,熟練的運(yùn)用相關(guān)的性質(zhì)定理推出∠BOC=2∠BOD,∠BOC=2∠CAB,繼而推出∠BOD=∠CAB.