證明:在正方形ABCD中,AB=AD,∠ABG=∠DAF=90°,
∵DE⊥AG,
∴∠2+∠EAD=90°,
又∵∠1+∠EAD=90°,
∴∠1=∠2,
在△ABG和△DAF中,
,
∴△ABG≌△DAF(ASA),
∴AF=BG,AG=DF,∠AFD=∠BGA,
∵AG=DE+HG,AG=DE+EF,
∴EF=HG,
在△AEF和△BHG中,
,
∴△AEF≌△BHG(SAS),
∴∠1=∠3,
∴∠2=∠3,
∵∠2+∠CDE=∠ADC=90°,
∠3+∠ABH=∠ABC=90°,
∴∠ABH=∠CDE.
解析分析:根據(jù)正方形的性質(zhì)可得AB=AD,∠ABG=∠DAF=90°,再根據(jù)同角的余角相等求出∠1=∠2,然后利用“角邊角”證明△ABG和△DAF全等,根據(jù)全等三角形對應(yīng)邊相等可AF=BG,AG=DF,全等三角形對應(yīng)角相等可得∠AFD=∠BGA,然后求出EF=HG,再利用“邊角邊”證明△AEF和△BHG全等,根據(jù)全等三角形對應(yīng)角相等可得∠1=∠3,從而得到∠2=∠3,最后根據(jù)等角的余角相等證明即可.
點(diǎn)評:本題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),等角或同角的余角相等的性質(zhì),本題難點(diǎn)在于兩次證明三角形全等,用阿拉伯?dāng)?shù)字加弧線表示角可以更形象直觀.