解:(1)根據(jù)函數(shù)圖象得拋物線的對稱軸為直線x=-3,
則拋物線與x軸的交點坐標(biāo)為(-6,0),(0,0),
所以t=-6;
(2)把A(-3,-3)和P(-4,0)代入y=ax2+bx得

,
解得

,
所以拋物線的解析式為y=x2+4x,
因為a=1>0,
所以拋物線開口向上;
(3)t>-3且t≠0.
解析分析:(1)根據(jù)函數(shù)圖象可直接得到對稱軸方程,利用拋物線的對稱性可得到P點坐標(biāo),即得到t的值;
(2)利用待定系數(shù)法確定a、b的值,然后根據(jù)二次函數(shù)的性質(zhì)確定拋物線開口方向;
(3)由于拋物線y=ax2+bx的開口向下,且過點A(-3,-3),則點P一定在點(-3,0)右側(cè),于是可得到t的范圍.
點評:本題考查了二次函數(shù)的圖象與系數(shù)的關(guān)系:二次函數(shù)y=ax2+bx+c(a≠0)的圖象為拋物線,當(dāng)a>0,拋物線開口向上;對稱軸為直線x=-

;拋物線與y軸的交點坐標(biāo)為(0,c);當(dāng)b2-4ac>0,拋物線與x軸有兩個交點;當(dāng)b2-4ac=0,拋物線與x軸有一個交點;當(dāng)b2-4ac<0,拋物線與x軸沒有交點.